

 DrawAid 3

 Reference Guide

CARVIC Manufacturing
FORRES
Scotland

DrawAid
Reference Guide

Third Edition 14th March 1996
Author: William R. Graham

© Copyright 1996 CARVIC Manufacturing
All rights reserved

Copyright and Contractual Notice

No part of this document, or the whole or any part of the software product described
within, may be reproduced in any material form except by the licensed user. The
licensed user may only reproduce the document or software product for their personal
use with any single computer, and may not sell, loan, share, distribute or make
accessible by network or by any other means, the information contained in the document
or product without the written agreement of CARVIC Manufacturing. On retention of this
software the licensed user contracts by means of this document with CARVIC
Manufacturing to use his best endeavours to keep all copies of his licensed material
inaccessible to others for the purpose of copying.

A single exception is permitted to the above whereby brief extracts of information
contained in this document may be reproduced for the purposes of journalistic review.

Each product issued contains in multiple places an embedded licence number identifying
the single licensed user. Neither this information nor any other information either in the
document or in the LIBRARY directory of the product may be altered by the licensee or by
any other person.

This application makes use of the Acorn Drawfile module, a copy of which is included
inside the application directory. This module is distributed with Acorn’s permission, but
remains their copyright, which is hereby acknowledged.

Disclaimer While CARVIC Manufacturing has taken care to ensure that the information
contained in this document and the DrawAid product is reasonably correct, and since by
its nature the software will interact closely with the user’s own programs, CARVIC
Manufacturing accepts no liability for any consequential loss or damage, however
caused. The user must ensure to his own satisfaction that the results of the joint
programs are correct.

All Trademarks and Registered Trademarks used in this document are hereby
acknowledged.

V3.01 14th March 1996

Note: See ReadMe File for any changes to these conditipns
V3.02 4th January 2003

Preface

Anyone who has used a variety of computers, as I have over many years in industry,
will know just how outstanding is the Acorn RISC OS series of machines.

It is true that much of the independent software for the computers is also first class, as
is evidenced by the Impression Publisher document processor from Computer
Concepts, on which this Guide was prepared.

It is also true that in the past many engineers, scientists, mathematicians and other
professionals were adept at writing their own specialist programs as working tools,
often in BBC BASIC. However, although the advent of Wimp based, multi-tasking
software takes user-friendliness into a new realm it tends to suggest that unless a user's
own programs make full use of the Wimp, they cannot be worthwhile. For many one-
off industrial problems this leads to a situation analogous to trying to fit a jet engine to
a garden strimmer. We should not forget that computers are tools of great scope and
flexibility, and that lots of "straight", specialist, little BASIC programs can produce
much more added value to a professional than a Wimp solution, which doesn't quite do
all that is required, is difficult to modify, and took months of effort.

One need which is central to technical professionals is the preparation of specialist
charts, diagrams, and drawings related to their own discipline, and constructed from
their own data or calculations. While RISC OS spreadsheets and art packages may
provide most of the answers as Draw or sprite files, these often have to be tailored or
fudged using the Acorn Draw and Paint applications. Some people manage by
producing a drawing from their own program on the screen, and then using Paint to
"grab" a sprite for import into their DTP document.

Version 1 of DrawAid was written in 1991 (followed by Version 2 in 1993) to allow
professional engineers and others to prepare Draw files directly from their own BASIC
programs without knowledge of either the Wimp system or of Draw file structure, and
with the minimum of fuss.

Version 3 of the software is now fully RISC OS compliant, making it easier than ever to
produce simple programs which generate Draw files to the user's exact needs with the
very minimum of work. Further enhancements include messaging and data input,
symbols, continuous splines, font and sprite rotation, and better control of line styles.

Because DrawAid is object oriented, and uses everyday units (mm) I have personally
found it to be invaluable in my own work, and I am sure that my colleagues and all
Acorn RISC OS users will find it to be a useful tool in their professional endeavours.

Forres ; 14th March 1996 William. R. Graham

Contents

Introduction Page

 1 : Using DrawAid 3

 2 : Demonstration Program 5

 3 : Program Format 7

 4 : Standard Objects 11

 5 : Text Objects 17

 6 : Path Objects 19

 7 : User Objects 23

 8 : Sprite Objects 25

 9 : CSV Objects 27

10 : Use of Groups 31

11 : Colours 33

12 : System 35

13 : Other Procedures 37

14 : DrawAid Variables 41

15 : Memory and other Facilities 43

16 : Example Programs 45

17 : Vector Font 47

18 : Tutorial 49

19 : Tools 61

20 : Upgrade Notes 63

Page 1

Introduction

The Acorn RISC OS series of computers are supplied with Draw, an excellent, general
purpose, object based drawing program. Draw allows the mouse to be used
interactively to generate high quality line drawings. These drawings can then easily be
incorporated into professional documents by use of a Desk Top Publishing package.
However, users of Draw may have found it difficult at times to obtain accurate
drawings, particularly where curves are used, or repetitive positioning is required. For
instance, the drawing of items like gear wheels or instrument dials is extremely
difficult.

DrawAid is an object-oriented, application environment which is designed to overcome
these limitations and allows BASIC programmers to generate complex and accurate
Draw files directly from their own programs. The facility to produce multiple file
output from one BASIC program is useful for producing a series of parametric
drawings, with indexing of one or more variables. In addition to providing access to
the RISC OS fonts, a special rotating font is supplied which is specially designed for
output to pen plotters. Facilities are also provided for the location, and manipulation of
sprites, and many of the objects produced by DrawAid can be defined by coma
separated value or CSV files.

Some users may have only a limited knowledge of BASIC, and DrawAid is designed to
make it as easy as possible for such users to generate Draw files. More advanced
users will readily be able to produce their own general purpose programs for such
applications as graph plotting, pattern design, the drawing of mathematical functions,
and the preparation of drawings of families of electrical and mechanical components.
They will be able to produce their own specialist procedure Libraries.

DrawAid operates from the desktop, and consists of two components. The first part is
the user's BASIC program which, together with the DrawAid BASIC Library, can run
as an independent task making maximum use of memory and speed. Alternatively it
can run as a fully multi-tasking program in cooperation with the second component,
which is the DrawAid RISC OS interface.

This Reference Guide describes the facilities provided, and demonstrates how to use
DrawAid by means of examples.

Page 2

Page 3

1: Using DrawAid

The disc supplied is not write protected, and should be copied onto a working disc and
then kept in a secure location. Note that each copy contains a coded individual licence
number identifying the licensee. Refer to the title page for copying conditions.

Those with a hard disc should copy DrawAid into any suitable directory.

Programs may be prepared using any BASIC editor, perhaps preferably Acorn's Edit
which is supplied with RISC OS, or commercial editors such as DeskEdit or StrongEd.

The System directory needs to be available to DrawAid, and should have been "seen"
by the operating system prior to running DrawAid.

Double clicking with the mouse select button on the DrawAid icon will install the
application on the icon bar. In addition it will set up various facilities required by
DrawAid. Clicking with select on the installed icon will open a long dialogue box or
monitoring window, and a Directory viewer called UserFiles.

Initially this Directory viewer shows three demonstration BASIC files. and seven
directories called CSV, DrawFiles, Notes, Programs, Rigs, SpriteFile and Tools.

On your own working disc the directory Rigs, and the three BASIC files can later be
deleted. The Programs directory contains the supplied examples, and you may replace
them with your own programs although user programs can be stored anywhere on the
system. Likewise the directories Notes and Tools may be relocated wherever the user
wishes. However, CSV and SpriteFile are private directories for use by DrawAid and
should not be deleted or moved, unless they are redundant to the user's needs.

Page 4

DrawFiles should neither be moved nor deleted. These directories should be "cleaned"
if large files are to be saved on a working floppy disc.

SpriteFile is where the sprites to be used by the BASIC programs are stored, and CSV
is similarly where the user's CSV files should be placed. The DrawFiles directory is
where the resulting Draw files will be placed by DrawAid. The Rigs directory is used
by one of the example programs included.

Inside the Programs directory will be found a BASIC program called AidBlank. This
is provided as a starting point for the user’s own BASIC programs and should be
dragged into Edit, or whichever BASIC editor is to be used, when a new BASIC
program is to be prepared. See section 3 : Program Format on how to prepare
programs.

When the DrawAid icon is installed a Library directory, containing all of the DrawAid
procedures, is made available and is subsequently loaded by the user’s BASIC
program. The user need not be concerned about this Library directory, unless he or
she wishes to add their own procedure library, and its contents should not be modified.

Below the UserFiles directory viewer is a long dialogue box which is used by DrawAid
to provide progress messages from both the application and the user's program. Data
can also be entered here on request from the user's program. BASIC programs can be
"launched" by dragging them either to this monitoring dialogue box, or to the icon bar
icon. A further window, used to display the generated Draw files, can also be used to
start programs. Programs launched in this manner will be treated as sub-tasks of
DrawAid, and will be multi-tasking. DrawAid will monitor their progress, and display
sequentially any number of Draw files generated.

If a BASIC program is double-clicked, rather than launched as described, it will run as
a single task, and only the last drawing it generates will be displayed. If DrawAid has
been Quit from the icon bar then BASIC files will still run, provided DrawAid has been
run once to set up its environment. In this case no display will be provided, but the
DrawFiles directory will open to show the files produced. This method will be found
to be faster for "production" programs, and useful for programs requiring maximum
memory. The TaskManager should be used to set the Next Task bar to a suitable value.

In addition to the above functions, any Draw file, produced by any other program,
dragged to the icon bar DrawAid icon, or on to either of its two windows, will be
displayed.

The three BASIC files are provided as demonstrations. DragMeDown should be run
first by dragging it into the dialogue box. Barcoder requests a number to be entered
into the data icon. Click with select on this icon to acquire the caret, and enter a
number up to thirteen digits. GearTrain will prepare a drawing of two engaging gear
wheels. Two numbers are required, and should be entered into the icon as requested.
Typical values are 13 teeth and 28 teeth.

Page 5

2 : Demonstration Program

If the DragMeDown BASIC file is dragged from the UserFiles directory to the
dialogue box it will provide a demonstration of DrawAid in action.

A simplified listing of this program with the messages, comments and timing routine
removed is shown below. This is the required essence, but inspect the full program in
your editor.

REM >DragMeDown
LIBRARY “<DrawAid_Lib$Dir>.Procedures”
PROC_report_errors
object=1:PROC_DrawAid(“Drawing1”)
object=2:PROC_DrawAid(“Drawing2”)
object=3:PROC_DrawAid(“Drawing3”)
PROC_finish
END

DEFPROC_Objects
xc=50:yc=40:REM set object centre coordinates
IF object=1 THEN
 PROC_circle(width2,black,red,xc,yc,30)
 PROC_outline_text(“Trinity.Bold”,grey2,red,8,20,22,24,“Welcome”,10)
 PROC_outline_text(“Trinity.Bold”,black,grey2,7,21,22,24,“Welcome”,10)
ENDIF
IF object=2 THEN PROC_polygon(width3,red,yellow,xc-5,yc,40,5,0)
IF object=2 THEN PROC_ring(width2,red,dark_blue,xc+10,yc,30,40)
IF object=3 THEN PROC_userproc
ENDPROC

DEFPROC_userproc
REM Draw shaded ellipse with Vector text at an angle
LOCAL xo,yo,majoraxis,minoraxis,angle
xo=xc:yo=yc:majoraxis=70:minoraxis=35:angle=20
PROC_new_group
FOR colour=0 TO 7
 PROC_ellipse(width4,none,colour,xc,yc,majoraxis,minoraxis,angle)
 majoraxis-=2.5:minoraxis-=2.5
 NEXT colour
PROC_end_group
PROC_vector_text(red,xc-38,yc-26,20,bold,oblique,angle,“DrawAid”)
PROC_vector_text(yellow,xc-38,yc-26,20,light,oblique,angle,“DrawAid”)
ENDPROC

Page 6

When the DragMeDown demonstration program is run it will draw attention in the
dialogue box, then generate three independent Draw files called Drawing1 to
Drawing3, and place them in the DrawFiles directory. A running progress report is
displayed in the dialogue box. The resulting Draw files may be inspected again by
dragging them into the display window.

 Drawing1 Drawing2 Drawing3

If you happen to start the DragMeDown program by single clicking on its file, it may
appear that your machine has stopped, but the program is single tasking and will
conclude by opening the DrawFiles directory. You can stop single tasking programs
by pressing the <escape> key. Multi-tasking programs can be stopped by opening the
TaskManager, selecting DrawAidTask with the Menu button, and Quitting. Note that
quitting DrawAid from the icon bar does not stop any subtask which is running.

Note that, for ease of use, the default units used in DrawAid are mm and degrees. All
the parameter values in procedures are therefore directly in these units and not in the
OS units and radians which are more usual in BASIC programs.

The procedures demonstrated in DragMeDown plus many others are described in
stages in the following sections.

Examples relevant to these procedures are named in the left margin of each page.
Further information can be found in section 15 : Examples.

WelcomeWelcome

Examples

Page 7

3 : Program Format

In the directory UserFiles.Programs will be found the BASIC program AidBlank.
This program provides a useful starting point for the users to prepare their own
programs. AidBlank is listed below.

 10 REM >AidBlank
 20 REM **********************************
 30
 40 LIBRARY “<DrawAid_Lib$Dir>.Procedures”
 50 PROC_report_errors
 60 PROC_DrawAid(“”)
 70 PROC_finish
 80 END
 90
100 REM **********************************
110
120 DEFPROC_Objects
130 REM Place definitions of all objects here eg
140 PROC_circle(width3,black,red,100,100,20)
150 ENDPROC
160
170 REM **********************************

This listing shows the simplest form of program, and will draw a 20mm radius circle.

The library called at line 40 provides the main procedure PROC_DrawAid("") , which
in turn interprets the list of objects to be drawn as determined by the user in
DEFPROC_Objects. PROC_circle() would of course be replaced by the user’s own
choice of object procedures.

If this program is run it will be seen that progress reports appear (briefly in this case),
and the finished file is shown by the monitoring application.

The LIBRARY of DrawAid procedures is loaded at line 40. This statement must be
present in exactly this form. The procedures PROC_report_errors, and
PROC_circle() referred to in the listing are supplied in this Library and therefore no
procedure definitions for them or for PROC_DrawAid() are required in the program.

Line 50 provides a simple error handler to trap any following errors. Line 60 calls the
main routines of DrawAid which generate the Draw file. It must be present of course.
The name to be given to the target file should be provided as a string parameter. If a

Page 8

null string is provided, as shown here, the name Untitled is given to the file by default.
There can be successive calls to this procedure each with a different name allowing
multiple files to be produced.

Line 70 is a call which simply marks the last call to PROC_DrawAid("") , and resets
various system variables. It must be included.

Line 120 declares the procedure definition DEFPROC_Objects where all objects to be
drawn are inspected by DrawAid. DrawAid is object oriented, and each object to be
drawn must be referred to inside this procedure. These objects may be defined by
procedures supplied in the DrawAid Library, or supplied by the user, either within the
program or in the user's own Library.

Objects may be of the following types, being mixed and used as required:

Standard Objects circles, rectangles, segments etc.
Text Objects system, outline, vector
Path Objects move, line, arc etc.
User Objects as defined by the user, calling DrawAid procedures
Sprite Objects any sprite
CSV Objects objects defined in CSV format

The PROC_circle() definition in AidBlank is a Standard Object, and is described in
the following section.

The values used as parameters in these routines can be prescribed or calculated before
calling PROC_DrawAid(), or calculated within PROC_Objects or within any user
defined procedure as required. The default units used by DrawAid are mm and
degrees not OS units and radians.

The standard constructs of BASIC such as FOR---NEXT, REPEAT---UNTIL, IF---
THEN---ELSE etc., can be used within PROC_Objects to calculate the values of the
procedure parameters required.

Note that because DrawAid makes two passes through DEFPROC_Objects, and any
procedures to which it refers, DIM statements therein will cause a re-dimension error.
All DIM statements should be made prior to calling PROC_DrawAid().

Variable values should not be assumed to be zero, as these will not be zero on the
second pass. Preferably LOCAL variables should be used in all user procedures.

If data is READ within DEFPROC_Objects an "out of data" error will occur unless
RESTORE is placed after the last READ statement. This is required in order to reset
the data pointer to the start of the DATA statements for the second pass through
PROC_Objects which is made by DrawAid. when saving the Draw file.

DragMeDown
MultiCircs

WarGame
BarCoder

Lenses
Bush

Graph
Table_1

Page 9

If a random number generator is used, ie RND(), then this must be seeded to produce
the same "random" number on each of the two passes.

BASIC graphics commands such as MOVE, DRAW, CIRCLE, ORIGIN etc. should
not be used. The more extensive DrawAid object procedures PROC_circle() etc.,
must be used instead.

It is suggested that all data entry and general calculation is carried out prior to calling
PROC_DrawAid. The results of data entry or calculations can be passed to
PROC_Objects as global variable values.

If a BASIC statement such as INPUT "Enter the circle diameter ";diam is included
before calling PROC_DrawAid() this will cause an Edit task window to open, and the
request for data is made to the user. Similarly, PRINT statements will also appear in
an Edit task window. At the end of the program this task will quit, and the window
contents are available for handling by Edit. Text files recording the program’s
machinations can thus be generated.

The best way to learn any program is to start using it as soon as possible, and to this
end many ready to run examples are included in the directory Examples. If problems
are encountered after trying some examples, and reading this Guide, the user is advised
to work through the step by step tutorial in section 17 : Tutorial .

WarGame
Cushion
Bush

Page 10

: Notes

Page 11

4 : Standard Objects

Many parts of drawings, such as circles, arcs, and rectangles are often repeated and so a
set of procedures to generate these standard shapes are available in DrawAid. The
principal list is:

PROC_line() PROC_spline()
PROC_triangle() PROC_rectangle()
PROC_polygon() PROC_circle()
PROC_arc() PROC_sector()
PROC_segment() PROC_ellipse()
PROC_quadrant() PROC_frame()
PROC_rounded_box() PROC_plaque_box()
PROC_arrow_out() PROC_arrow_in()
PROC_dimension() PROC_dimension_off()
PROC_dimension_vector() PROC_dimension_off_vector()
PROC_xaxis() PROC_yaxis()
PROC_axes() PROC_ring()
PROC_poly_spline()

The parameters required by the procedures vary, but are generally of the form:

(ow, oc, fc, various geometry values)

ow is the outline width in points
Several constants have been pre-defined for the user as parameters and have the
following values.

 thin = 0 the thinnest line
 width0 = 0 the same as thin
 width1 = 1 one point wide
 width2 = 2 two points wide
 up to
 width9 = 9 nine points wide

as well as these values any other value of line width may be inserted numerically.

oc is the outline colour and fc is the fill colour
To save remembering colour numbers a variety of colour facilities are provided, and
described below in the section 11 : Colours . However, most useful are the desktop
colours for values of oc and fc, and these can be referred to by the following names.

 colour name desktop colour

white 0
grey1 1

Page 12

grey2 2
grey3 3
grey4 4
grey5 5
grey6 6
black 7
dark_blue 8
yellow 9
light_green 10
red 11
straw 12
dark_green 13
orange 14
light_blue 15
none -1
transparent -1
clear -1

If desired the desktop colour number may be inserted as a numerical value rather than a
colour name.

parameters defining various geometry values
These define specific aspects for each geometry such as the co-ordinates of reference
points, the radius of an arc, or an angle, etc. These co-ordinates are given in user units,
which default to mm, and are measured from the drawing origin, which is at the lower,
left-hand corner of the DrawAid display window. Angles are all in degrees. An
origin point for each object exists, usually denoted by xo,yo, but this is given below for
each object.

Note that these parameters may be passed to the procedures either by a numeric value,
or by any user defined variable name in the usual manner.

The definitions of each of the standard objects, and the parameters which they take, are
listed below.

PROC_line(ow,oc,xs,ys,xe,ye)
ow and oc are as defined above. Note that no value for the fill colour fc is required.
xs,ys defines the start of the line and xe,ye the end. xs,ys is also the origin of the line.

PROC_spline(ow,oc,xs,ys,xc1,yc1,xc2,yc2,xe,ye)
This object defines a single Bezier curve using two control points. The origin is at
xs,ys and the end of the curve is at xe,ye. The two control points xc1,yc1 and xc2,yc2
have to be located to give the desired curve as in Draw. Note that there is no fill
colour fc required.

mmPaper
Compass
Trailer

Sprocket

Page 13

PROC_triangle(ow,oc,fc,x1,y1,x2,y2,x3,y3)
x1,y1 is the origin of the triangle. x2,y2, and x3,y3 are the other two vertices.

PROC_rectangle(ow,oc,fc,xo,yo,width,height,angle)
The rectangle is initially orientated horizontally with its origin xo,yo at the lower left
corner, and the width and height defined in the conventional way. If the value of angle
is not zero the rectangle is rotated anti-clockwise about its xo,yo point, through angle.
The value of angle is in degrees.

PROC_polygon(ow,oc,fc,xc,yc,radius,sides,startangle)
xc,yc is at the centre of the circumscribing circle of the prescribed radius. The value
of sides is an integer number not less than three. The polygon is initially orientated
with the first vertex, which is the object origin, horizontally to the right of xc,yc, It is
then rotated anti-clockwise through the value of angle in degrees.

PROC_circle(ow,oc,fc,xc,yc,radius)
The circle is generated from four Bezier curves, and the location of the control points
has been determined to give the closest possible approximation to a pure circle. xc,yc
is the circle centre. The object origin is the point on the circle horizontally to the right
of the centre.

PROC_arc(ow,oc,fc,xc,yc,radius,startangle,endangle)
xc,yc is the centre of the arc circle. The startangle and endangle are measured anti-
clockwise from the horizontal. The object origin is at the end of the arc defined by
startangle. Note that the angle subtended by the arc is not allowed to exceed 359
degrees. It is assumed that for any larger arc you will require PROC_circle().

PROC_sector(ow,oc,fc,xc,yc,radius,startangle,endangle)
This procedure generates a pie shaped object. xc,yc is the centre of the sector circle,
and the object origin. The startangle and endangle are measured anti-clockwise from
the horizontal. Note that the angle subtended by the arc is not allowed to exceed 359
degrees.

PROC_segment(ow,oc,fc,xc,yc,radius,startangle,endangle)
This procedure generates the lens shaped object formed between an arc and its chord.
xc,yc is the centre of the segment circle. The startangle and endangle are measured
anti-clockwise from the horizontal. The object origin is at the end of the arc defined by
startangle. Note that the angle subtended by the arc is not allowed to exceed 359
degrees.

PROC_ellipse(ow,oc,fc,xc,yc,majorradius,minorradius,angle).
 xc,yc is the geometric centre of the ellipse. The two radii can be in any order, but
DrawAid orientates the ellipse so that initially the major axis is horizontal. This axis
is then rotated anti-clockwise from the horizontal through angle measured in degrees.
The object origin of the ellipse is the point on the ellipse horizontally to the right of the
centre before rotation, i.e. at the right end of the major axis.

Trailer

DragMeDown
BigWheel
CarWheel

Circles

PieChart
ArcChart

DragMeDown

Page 14

PROC_quadrant(ow,oc,fc,xc,yc,radius,quadrant)
xc,yc, is the centre of the quadrant circle. quadrant can take the values, 1,2,3 and 4
according to standard mathematical notation.

PROC_frame(ow, oc, fc, xo, yo, width, height, wall, angle).
This procedure generates a hollow rectangular frame in the same manner as
PROC_rectangle() described above. The additional parameter wall defines the wall
thickness of the frame. Only the wall is filled with colour fc. The interior is truly
transparent.

PROC_rounded_box(ow,oc,fc,xo,yo,width,height,corner_radius).
This procedure generates a rectangle with corners rounded-off to corner_radius.

PROC_plaque_box(ow,oc,fc,xo,yo,width,height,corner_radius). This is similar to
the previous procedure, and generates a rectangle having corners fitted with re-entrant
arcs of corner_radius. Note: PROC_plaque() is also valid.

PROC_arrow_out(ow,oc,xo,yo,length,angle)
This procedure draws an arrow-head pointing outwards from the origin point xo,yo.
The point of the arrow is length from the origin and set at angle degrees anti-clockwise
from the horizontal. No fill colour fc is required.

PROC_arrow_in(ow,oc,xo,yo,length,angle)
This procedure draws an arrow-head pointing inwards to the origin point xo,yo. The
tail of the arrow is length from the origin and set at angle degrees anti-clockwise from
the horizontal. No fill colour fc is required.

PROC_dimension(xs,ys,xe,ye)
PROC_dimension_vector(xs,ys,xe,ye)
These produce a dimension line with arrow-heads between the start point xs,ys and the
end point xe,ye. They place the value of the dimension adjacent to the line. The
format of the dimension line and the text are governed by PROC_dimension_style()
and PROC_dimension_vector_style() given in section 13: Other Procedures below.
The value will be positioned between the two arrow-heads, but if there is insufficient
space it will be omitted. Outline text is used unless the vector form of the procedure is
called in which case Vector text is used.

PROC_dimension_off(xs,ys,xe,ye,offset)
PROC_dimension_off_vector(xs,ys,xe,ye,offset)

This is identical to the previous procedure, but the dimension is off-set from the end-
points. Using a negative value for offset will place the dimension on the other side of
the line between the points.

Quadrant

Frame

Label
CSVGraph

Plaque

Arrows

Arrows

Dimensions

Page 15

PROC_xaxis(ow,oc,xo,yo,xmin,xmax,ticksize,tickspace)
This will generate a horizontal axis with arrow-head and ticks, between the values of
xmin, and xmax, and the origin located at xo,yo. All values default to mm.

PROC_yaxis(ow,oc,xo,yo,ymin,ymax,ticksize,tickspace)
This will generate a vertical axis in the same manner as above.

PROC_axes(ow,oc,xo,yo,xmin,ymin,xmax,ymax,ticksize,xtickspace,ytickspace)
This procedure will draw two dimensional axes with the origin at xo,yo, extending
between xmin and xmax horizontally and ymin and ymax vertically. Legends can be
positioned as required using PROC_vector_text().

PROC_ring(ow, oc, fc, xc, yc, inner_radius, outer_radius)
This generates a hollow annulus centred on xc,yc where only the ring between the inner
and outer radii is filled with colour fc. Again, the interior is truly transparent.

PROC_poly_spline(ow,oc,fc,xo,yo,npoints)
This procedure fits a smooth curve through a line of npoints% where the points are
contained in the array variables polyx(i%) and polyy(i%) where i% varies from 1 to
npoints%. A maximum of 50 points can be stored in these arrays. Duplicate values
of polyx() are not permitted. The slopes at the end of the line are calculated from the
rate of change of slope near the end of the line. If this results in an unacceptable slope,
an additional defining point close to the end point should be inserted.

Standard Symbols
In addition to the above standard objects a number of simple symbols, centred on the
point xc,yc, are available for use in diagrams.

PROC_symbol_circle(xc,yc)
 PROC_symbol_cross(xc,yc)
 PROC_symbol_diamond(xc,yc)
 PROC_symbol_hspread(xc,yc)
 PROC_symbol_ring(xc,yc)
 PROC_symbol_square(xc,yc)
 PROC_symbol_star(xc,yc)
 PROC_symbol_triangle(xc,yc)
 PROC_symbol_vspread(xc,yc)

The style of the symbol is defined by PROC_symbol_style(ow,oc,fc,size) which
applies to all subsequent symbols. If this procedure is omitted from PROC_Objects
the symbol style defaults to PROC_symbol_style(0.25,black,red,2.5), where the line
width ow is in points and the size is in mm.

AxesEx
AxesOsc

Rings

PolySpline

Symbols
EUflag
PolyJet

Page 16

: Notes

Page 17

5 : Text Objects

Four procedures for placing text on a drawing are provided.

PROC_text()
PROC_vector_text()
PROC_outline_text()
PROC_outline_text_pt()

PROC_text(colour,xo,yo,text$)
Provides the system font. Any of the colour names above or given in the section
11 : Colour may be used for colour. xo,yo locates the lower left corner of the first
character of the text. text$ has the same scope as any normal BASIC string. The text
size is prescribed to the Draw default values of 6.4 points wide, and 12.8 points high.

PROC_vector_text(colour,xo,yo,size,weight,style,angle, text$)
This special DrawAid font is given the name Vector, because of the manner of its
generation. The characters are defined within DrawAid, and are produced by line
drawing, in the same manner as all other standard objects described above. The text
cannot be edited within Draw as a normal font. However, it can be produced in
various forms, can be placed at any angle, and be reproduced on a pen plotter.

colour, xo,yo, and text$ are defined in the same manner as above. The other
parameters have the following meanings and values:

size is given in mm, and refers to the height of the text capitals. Character width
varies with each character.

weight is the thickness of the line with which the text is drawn. It is measured as a
decimal fraction of size, and may sensibly take any numerical value less than about 0.2.
However, the following names are provided to ease use. The fraction of size which
they represent is also given.

thin = 0 the thinnest line which can be drawn
light = 0.05
medium = 0.09
bold = 0.13

The user can use intermediate numerical values for other weights of line.

style refers to the slope of the characters from the vertical.
It is measured in degrees and two pre-defined names are provided.

regular = 0 upright characters
oblique = 12 sloping characters

The user can provide other numerical values as required.

Table_1

VectorText
DragMeDown
AxesOsc
Graph
BarCoder

Page 18

angle refers to the orientation of the text string. It is measured in degrees. The origin
xo,yo is located at the lower left corner of the text string, and the whole string is rotated
in an anti-clockwise direction through angle degrees about this point.

PROC_outline_text(
 fontname$,textcol%,backcol%,xo,yo,width,height,text$,angle)

PROC_outline_text_pt(
 fontname$,textcol%,backcol%,xo,yo,width,height,text$,angle)
These two procedures allow access to the extensive Acorn families of outline fonts.

In both procedures fontname$ is the name of any outline font, eg "Trinity.Bold",
previously "seen" by the system, ie the Font application needs to have been run.

Both textcol% and backcol% (the antialiasing background colour) can assume any
valid colour name or value, eg red.

The origin xo,yo is located at the lower left corner of the text string.

width and height refer to the dimensions of the nominal capital, and are in mm in the
first procedure and in points in the second. text$ can be any string.

angle is the rotation in the font base line in anticlockwise degrees from the horizontal.

If the requested outline font is not available an error message is returned. The system
font is not substituted.

FancyFont
Plaque
Table_2
Label
Compass

Page 19

6 : Path Objects

Whilst it is possible to generate many complex drawings using the above standard
objects, more flexibility has been provided within DrawAid by use of path objects.

Path objects are prepared with a set of procedures which directly generate the path
elements used within Draw. The user is assumed to be familiar with the path nature of
the Draw application, and the manner in which paths are constructed from move and
draw elements.

This list of procedures available is:

PROC_new_path() PROC_move()
PROC_draw() PROC_curve()
PROC_move_rel() PROC_draw_rel()
PROC_curve_rel() PROC_arc_path()
PROC_vector_move() PROC_vector_draw()
PROC_locate_path() PROC_rotate_path()
PROC_scale_path() PROC_odd_scale_path()
PROC_scale_path_X() PROC_scale_path_Y()
PROC_shear_path_X() PROC_shear_path_Y()
PROC_flip_path_X PROC_flip_path_Y
PROC_mirror_path_X PROC_mirror_path_Y
PROC_poly_curve_move() PROC_poly_curve_draw()
PROC_close PROC_close_end_path
PROC_end_path

The simplest example of use of these procedures is:

 DEFPROC_Objects
 PROC_new_path(thin,red,none)
 PROC_move(10,10)
 PROC_draw(60,10)
 PROC_end_path
 ENDPROC

This program segment will generate a line object 50 mm long, and the four procedure
calls are equivalent to the standard object statement:

 DEFPROC_Objects
 PROC_line(thin,red,none,10,10,60,10)
 ENDPROC

Page 20

However, path objects are very flexible and permit the construction of complex shapes
and specialised procedures. In fact all of the standard procedures are defined in just
this way. Section 17 : Tutorial , gives further examples of using these procedures.

Path objects have a limit of 1000 points. If this limit is exceeded a warning is given.
The problem path should be split into sections.

The definitions of each of the path procedures, and the parameters which they take,
follow.

PROC_new_path(ow,oc,fc)
Begins a new path with outline width ow, outline colour oc, and fill colour fc, having
the same meanings as for standard object procedures. This procedure must be
followed by a PROC_move(), and the path must finish with either PROC_end_path
or PROC_close_end_path.

PROC_move(x,y)
If this occurs at the start of a new path it causes a move to location x,y and sets the path
origin xo,yo to this point. The origin is used as a reference for other procedures such
as PROC_scale() and PROC_rotate(). If PROC_move(x,y) occurs elsewhere the
path line is broken and relocated at x,y.

PROC_draw(x,y)
Draws a straight line from the current location to point x,y.

PROC_curve(xe,ye,xc1,yc1,xc2,yc2)
Draws a Bezier curve from the current location to the point xe,ye. xc1,yc1 and
xc2,yc2 are the control points related to the start point and end point of the curve
respectively.

PROC_locate_path(xo,yo,xposition,yposition)
Shifts all of the points on the path so that the point xo,yo, is relocated at positionx,
positiony. Point xo,yo, may be chosen to be the path origin, or any other point on the
path, or indeed any other point not on the path.

PROC_rotate_path(xo,yo,angle)
Rotates all of the points on the path about the point xo,yo anti-clockwise through angle
degrees. Point xo,yo may be chosen to be the path origin, or any other point on the
path, or indeed any other point not on the path.

PROC_scale_path(factor)
Magnifies the size of the path object by a factor, which may be smaller or greater than
one. Only the origin point of the path remains in its original position.

PathWay

PathWay

PathWay

PathWay
Mirror

WarGame

PathWay

SineWave2

Page 21

PROC_scale_path_X(factor)
This allows scaling of the path defined to that point in the X or horizontal direction
only. Scaling takes place relative to the path origin (the first point on the path) which
remains unmoved.

PROC_scale_path_Y(factor)
Permits scaling in the Y or vertical direction.

PROC_odd_scale_path(xo,yo,factorx,factory)
Magnifies the size of the path unequally in both x and y directions by factorx and
factory. The scaling takes place about point xo,yo, which may be the path origin
point, or any other point on the path, or indeed any point not on the path.

PROC_shear_path_X(angle)
PROC_shear_path_Y(angle)
These procedures shear all points on the path through an angle. Shearing takes place
relative to the graphics origin. If shearing is required about some other point, such as
the path origin, then the path should first be located with that point at the origin using
PROC_locate(). The reference point can then be re-located where required. When
sequentially using these two procedures they produce a warping effect.

PROC_flip_path_X
PROC_flip_path_Y
These allow the path, which has been defined up to that point in the program, to have
its X or Y values flipped about the axis through the path origin but not copied.
i.e. PROC_flip_path_X will flip the path X values about the vertical axis. There are
no parameters passed.

PROC_mirror_path_X
PROC_mirror_path_Y
These will mirror the path defined at that point in the program in X or Y values about
the axis through the path origin. i.e. PROC_mirror_path_X will copy the X values of
the path in reverse to the other side of the vertical axis. Again, no parameters are
passed.

PROC_move_rel(dx,dy).
This is a path procedure proscribing a move from the current x,y location to a point
relatively located dx,dy away.

PROC_draw_rel(dx,dy).
In the same manner this procedure will draw to a new point incrementally removed by
dx,dy.

PROC_curve_rel(dxe,dye,dxc1,dyc1,dxc2,dyc2).
This will draw a Bezier curve where the end point dxe,dye, and the two control points
dxc1,dyc1, and dxc2,dyc2 are positioned relative to the start point by the values given.

Mirror
Lenses

Lenses

Page 22

PROC_arc_path(xc,yc,angle).
This procedure will include a circular arc element on the path starting at the current x,y
location, centred on location xc,yc, and then extending through angle degrees. angle
represents an anti-clockwise arc, and negative values will give a clockwise arc. Arc
elements are limited to 90 degrees each.

PROC_vector_move(l,angle).
Allows a move from the current x,y location to a new point located at distance l and
angle degrees removed. The positive value of angle is measured anti-clockwise from
the horizontal.

PROC_vector_draw(l,angle)
offers the same facility for drawing a line element.

PROC_poly_curve_move(npoints%)
PROC_poly_curve_draw(npoints%)
These procedures fit a smooth curve through a line of npoints% where the points are
contained in the array variables polyx(i%) and polyy(i%) where i% varies from 1 to
npoints%. A maximum of 50 points can be stored in these arrays. Duplicate values
of polyx() are not permitted. The first procedure moves to the first point in the array,
whilst the second procedure draws to the first point.

PROC_end_path
completes the path. Although the start and end points may be co-located they can be
moved independently within Draw, and the path is said to be open. Clearly a truly
open object should terminate in this way.

PROC_close
This procedure will close the path but not end it. It must be followed by PROC_end or
PROC_move(), producing a path with two or more closed sections connected by an
invisible move.

PROC_close_end_path
completes the path, and joins the first and last points, which should be co-incident.
This procedure should be used for closed shapes. Either PROC_end_path or
PROC_close_end_path is required as the last entry in a path sequence.

For a further example of using path objects see the following section and section
17 : Tutorial .

Note: As arcs are constructed in Draw files from cubic splines, their shape can only
approximate to a true circular arc. The actual shape depends on the position of the two
control points. The user may find that the location of an expected intercept with such
an arc may be in obvious error on the drawing. The solution is to split the arc into two
parts with the intercept point being common to the two parts. This forces the curve
through the desired point.

Lenses

PathWay
SineWave1

PathWay

Mirror

PolyCurve
PolyJet

Page 23

7 : User Objects

Using the supplied path procedures the user can define his own frequently used range
of objects. These can then be stored in a Library and called as required. A physics
teacher, for instance, may require to produce drawings of sets of lenses and he could
define his own procedure e.g.

PROC_lens(ow,oc,fc,xo,yo,d,t,r1,r2)
xo,yo locates the lens reference origin i.e. on the axis at the left surface. d is the lens
diameter, t is its edge thickness, r1, and r2 are the surface radii.

The two-part listing below illustrates a program defining and using PROC_lens().
The lens train produced is shown in the diagram. After proving the procedure, it
would be stored in a User Library, thereby reducing the program to only 17 lines.

cont.

 REM >Lenses

 LIBRARY “<DrawAid_Lib$Dir>.Procedures”
 PROC_report_errors
 PROC_DrawAid(“LensSet”)
 PROC_finish
 END

 DEFPROC_Objects
 REM Place definitions of all objects here eg
 PROC_lens(width2,black,grey1,70,60,100,15,300,-300)
 PROC_lens(width2,black,dark_blue,102,60,100,5,-200,-300)
 PROC_lens(width2,black,grey1,110,60,100,5,-300,200)
 PROC_dot_dashed
 PROC_line(width3,black,55,60,140,60)
 ENDPROC

Lenses

Page 24

cont.

 saved in user Library

 LensSet

 DEFPROC_lens(ow,oc,fc,xo,yo,d,t,r1,r2)
 REM xo , yo is the location of the left surface centre
 REM d is the lens diameter, t is the edge thickness
 REM r1 and r2 are the surface radii
 REM a1 and a2 are the semi-conical angles of the surfaces

 LOCAL r,a1,a2,x1,x2,y1,y2
 r=d/2
 a1=DEG(ASN(r/r1)):a2=DEG(ASN(r/r2))
 x1=-r1:y1=0
 x2=t-r2*COS(RAD(a2))-r1*(1-COS(RAD(a1))):y2=0

 PROC_new_path(ow,oc,fc)
 PROC_move(0,0)
 PROC_arc_path(x1,y1,a1)
 PROC_draw_rel(t,0)
 PROC_arc_path(x2,y2,-a2)
 PROC_move(0,0)
 PROC_mirror_path_Y
 PROC_locate_path(0,0,xo,yo)
 PROC_close_end_path

 ENDPROC

Page 25

8 : Sprite Objects

Sprite objects can be selected from a file, and placed at any location on a drawing.
The required file of sprites is saved in the directory SpriteFile, and the file can contain
any number of individually named sprites. In the example below the single sprite
used is called tile_1, and is selected from the sprite file SpriteFile.Tiles.

The procedure PROC_load_sprites(sprite_file_name$) is placed in the program prior
to the call to PROC_DrawAid("") . The actual sprite objects are defined within
PROC_Objects by the calls PROC_sprite(), and PROC_sprite_scaled().

Also provided are procedures flipping the sprite about its X and Y axes. A flip about
the X axis is shown in the example above. These procedures should be set
immediately prior to calling PROC_sprite(), or PROC_scaled_sprite(). The sprite
is returned to its normal mode after each call to PROC_sprite(), or
PROC_scaled_sprite().

PROC_load_sprites(sprite_file_name$)
The required sprites are loaded as the file sprite_file_name$ immediately prior to a
call to PROC_DrawAid("") . The file sprite_file_name$ must be present in the
private directory SpriteFile.

PROC_sprite(spritename$,xo,yo,factor,angle)
This procedure will plot the sprite spritename$ from the file sprite_file_name$ with
its lower left corner at the location xo,yo. The sprite will be plotted at factor times its
"natural" size inclined at clockwise angle degrees to the horizontal. If factor =1 and
angle = 0 the sprite will be plotted normally at its "natural" size.

REM >Delft
LIBRARY “<DrawAid_Lib$Dir>.Procedures”
PROC_report_errors
PROC_load_sprites(“Tiles”)
PROC_DrawAid(“Delft”)
PROC_finish
END

DEFPROC_Objects
PROC_scaled_sprite(“tile_1”,50,20,50,50)
PROC_flip_sprite_X(“tile_1”)
PROC_sprite("tile_1",55,70,0.35,20)
PROC_scaled_sprite(“tile_1”,100,20,20,100)
ENDPROC

Delft
WarGame
RigChart

Delft
WarGame
RigChart

Page 26

PROC_scaled_sprite(spritename$,xo,yo,width,height)
This procedure will plot the sprite spritename$ from the file sprite-file-name$ with its
lower left corner at the location xo,yo. The sprite will be scaled to fit the rectangle of
size width x height, where these dimensions are user units, but default to mm.

PROC_flip_sprite_X(spritename$)
After this using procedure PROC_sprite() or PROC_scaled_sprite() will plot the
sprite with its X values flipped. After plotting the sprite is restored to its original
orientation.

PROC_flip_sprite_Y(spritename$)
After using this procedure PROC_sprite() or PROC_scaled_sprite() will plot the
sprite with its Y values flipped. After plotting the sprite is restored to its original
orientation.

PROC_flip_sprite_XY(spritename$)
After this using procedure PROC_sprite() or PROC_scaled_sprite() will plot the
sprite with both its X and Y values flipped. After plotting the sprite is restored to its
original orientation.

Note: When using PROC_load_sprites(sprite_file_name$) all of the sprites in that
file are loaded, but only those required are saved to the Draw file. If you are short of
memory, make sure that only the sprites you need are in sprite_file_name$.

Delft
Wargame

Delft

Page 27

9 : CSV Objects

It is sometimes convenient to prepare drawing data using other software, possibly a
wordprocessor or a spreadsheet, and on some other computer system. If this data can
be stored as a file of type text in CSV (comma separated value) format, it can be
presented to DrawAid as one or more CSV objects. The text file is stored in the
private directory CSV and is called from within DEFPROC_Objects by the following
procedure.

PROC_CSV(filename$)
filename$ is name of CSV text file in CSV directory.

In the following example the BASIC program is shown on the left, and the CSV file on
the right. This example shows how the BASIC program provides a fixed "shell" to
variable graphical data read from a CSV text file.

This facility has considerable scope for fertile imaginations. Even the spread-sheet or
word-processing document can be a "shell' or "template" into which non-programming
support staff can enter numerical data only.

 Text file CSVGraph

BASIC file CSVGraph

REM >CSVGraph
LIBRARY “<DrawAid_Lib$Dir>.Procedures”
PROC_report_errors
PROC_DrawAid(“Graph”)
PROC_finish_task
END

DEFPROC_Objects
PROC_rounded_box(width1,black,black,32,28,150,100,5)
PROC_rounded_box(width1,black,straw,30,30,150,100,5)
PROC_vector_text(black,40,60,5,medium,oblique,90,“oxygen%”)
PROC_vector_text(black,90,40,5,medium,oblique,0,“hours”)
PROC_axes(width1,black,50,50,0,0,100,60,3,10,5)
PROC_CSV(“CSVGraph”)
ENDPROC

REM CSV data for graph

new_path,3,11,12
move, 10, 20
draw, 30, 21.3
draw, 40, 27.5
draw, 50, 31.3
draw, 60, 36.8
draw, 70, 35.9
draw, 80, 37.8
draw, 90, 45.0
draw, 100, 58.2
locate_path,0,0,50,50
end_path

CSV-
Example
CSVGraph

Page 28

The resulting Draw file of the graph generated is shown below.

The information in the CSV file generates a single path which is the graph line. The
outline rounded box and axes information is provided by the BASIC program.
Multiple lines could be stored as separate paths in the same CSV file. See the
extended version of this program CSVGraph in the Examples directory. Note that the
CSV names, format, and parameters taken are identical to those of the BASIC object
procedures. A full list is given below, together with a three letter mnemonic which
can be used in place of the full name, and is useful in spread-sheets.

Comments may be inserted anywhere in the CSV file. Lines starting with REM or the
| character are not inspected for data. Spaces are ignored. Adjacent commas will cause
a zero to be read.

a) Standard Objects

circle cir
ring rin
ellipse ell
arc arc
segment seg
sector sec
quadrant qua
rectangle rec
frame fra
rounded_box rob
plaque_box pla
triangle tri
polygon pol
line lin
spline spl

Page 29

b) Path Objects

new_path new
move mov
draw dra
curve cur
arc_path arp
move_rel mor
draw_rel drr
curve_rel crr
vector_move vem
vector_draw ved
scale_path scp
odd_scale_path osp
scale_path_X scx
scale_path_Y scy
shear_path_X shx
shear_path_Y shy
flip_path_X flx
flip_path_Y fly
mirror_path_X mix
mirror_path_Y miy
rotate_path rot
locate_path loc
close clo
close_end_path cle
end_path end

Page 30

: Notes

Page 31

10 : Use of Groups

One of the advantages of Draw is its ability to group objects together and then to
manipulate them as a whole. Because DrawAid can contain loops producing multiple
objects, a facility to generate groups is included. Two procedures are provided.

PROC_new_group
PROC_end_group

The use of groups is shown in the demonstration program DraGmEdown, but is also
illustrated by the following program fragment:

500 PROC_rectangle(10,10,100,100,0)
500 PROC_new_group
510 FOR radius =50 TO 20 STEP -10
520 PROC_circle(width1,red,yellow,70,70,radius)
530 NEXT radius
540 PROC_end_group

On un-grouping the resulting Draw file the concentric circles will be found to be
grouped together with the square as a separate object.

Only one group may be open at one time. This means that groups cannot be nested but
all groups, and any single objects at this level, are grouped together as a single object in
the final Draw file. These two levels of nesting are more than adequate for most
applications.

Note that in Vector text strings of more than one character the characters are grouped
automatically, and such text can not be grouped further. If this is attempted a warning
is given.

Rings
Compass
Table_2
Trailer

Page 32

: Notes

Page 33

11 : Colours

The following names may be used where a colour value is required:

a) desktop palette

desktop colours desktop colour number
white 0
grey1 - grey6 1 - 6
black 7
dark_blue 8
yellow 9
light_green 10
red 11
straw 12
dark_green 13
orange 14
light_blue 15
none -1
transparent -1
clear -1

b) 16 greys

greyscale0 - greyscale16
greyscale16 is identical to greyscale15 ie black

These names define 16 grey colours in the Draw file. However, only 8 will show on
the normal desktop palette. Use the grey palette provided in the Tools directory to
show all 16 greys. 16 greys will show on the printer. Select dithered output on the
printer driver for a smooth gradation in level.

Additionally, the same scale is obtained from;

greyscale(i%) where i% =0 to 16. This allows the greys to be selected by a variable
i% , and incremented in loops.

Page 34

c) 256+ colours

Up to 256 colours may be selected at any time from a palette block by:

rgb(i%)
where i% =1 to 256

i% selects the colour previously set in the palette block by:

PROC_set_rgb(i%,r,g,b)
where i% =1 to 256
and where values of r, g, and b range from 0 to 100, i.e. percentage saturation, and may
assume fractional values eg 12.5.

Alternatively:

PROC_set_rgb_hex(i%,r%,g%,b%) may be used
where i% =0 to 256
and where r%, g%, and b% are integers with a maximum value of 255 decimal or
&FF.

These procedures may be used wherever required to redefine the 256 colours in the
palette block. Since the r,g,b definitions of the 256 colours in the palette block can be
redefined as the drawing is generated, this facility allows the definitions of up to 16
million colours to be present in one Draw file.

Note that, whilst the Draw file will hold the precise colour definition, the colour
displayed will depend on the screen mode. Even the 256 colour modes will show
only the nearest colour which that mode allows. However, Draw with RISC OS 3.1
will dither the mode colours to give the best approximation of the defined colour. Note
that neither the old versions of Draw nor DrawPlus will show dithered colours.

The evolving high capability colour printers and graphics screen enhancer plug-in cards
for use with the earlier Acorn RISC OS machines may give a more faithful
reproduction, depending on their colour ranges and the software drivers used. The
extended capability of the Acorn RISC PC range of computers will automatically show
the extended colour range.

GreyScale
ColourScale
Cushion

Page 35

12 : System

The DrawAid procedure Library is selected early in the main program by:

LIBRARY“<DrawAid_Lib$Dir>.Procedures”

If users require their own Library, named for instance MyLib, then this should be placed
in the directory DrawAid.Library and would be selected by including:

LIBRARY“<DrawAid_Lib$Dir>.MyLib”

Multiple libraries can be stored and selected by this call as required for any particular
program.

The following procedures govern the operation of DrawAid and must only be used in
the main program, and not in PROC_Objects, or any user defined procedure. The
error report should be included before calling PROC_DrawAid().

PROC_report_errors provides simple error report

PROC_DrawAid(filename$) use with new programs : Note ""="Undefined"

PROC_finish must follow the last PROC_DrawAid()

PROC_message(message$) allows the user to send progress reports to the
dialogue box. message$ is cropped to the
leftmost 47 characters.

PROC_fatal_error(message$) allows the user to send an error report to the
dialogue box. message$ is cropped to the
leftmost 47 characters.

PROC_no_hourglass use at the start of PROC_Objects to leave the
mouse pointer unaffected. This allows you to
carry on with other tasks uninhibited while the
DrawAid task continues in the background.

data$=FN_fetch_data(message$) allows the user program to fetch data entered
through the dialogue box. message$ is the
request sent, and data$ is the reply. data$ is
restricted to 19 characters, and must be
evaluated by the user's own routines.

PROC_set_units(<units>) Use at the start of PROC_Objects to select units
other than the default mm eg feet or cm etc.

BigWheel
CarWheel
Gears

DragMeDown

Compass

BarCoder
GearTrain

Circles

Page 36

Note: In the display window DrawAid will scale the drawing to fit the screen, unless
the object is small enough to fit "full size". In this case it will be drawn at "full size".
In practice this means that drawings which are either wider than about 120 mm or
higher than 90 mm will be scaled down to fit the window.

Page 37

13 : Other Procedures

a) Line Styles

The following procedures can be used anywhere within PROC_objects, and will set
the line style for the immediately-following, path or standard object. These styles do
not affect vector text or dimension text characters. After each object the line returns to
un-patterned. No parameters are passed by these procedures.

PROC_short_dotted PROC_short_dot_dashed
PROC_dotted PROC_dot_dashed
PROC_open_dotted PROC_long_dot_dashed
PROC_wide_open_dotted PROC_open_dot_dashed
PROC_dashed PROC_double_dot_dashed
PROC_long_dashed PROC_open_dashed

The example called LineTypes in the Examples directory has been run to produce the
figure below. This shows what the line patterns look like.

LineTypes

b) Control of caps and joints in line style use

The style of the start cap, joints and end caps used by a line can be redefined using the
following procedure.

PROC_line_joints(start%,join%,end%)

Dimensions
LineTypes
Lenses

dotted

dashed

long dashed

dot dashed

open dotted

wide open dotted

open dashed

open dot dashed

long dot dashed

short dot dashed

short dotted

double dot dashed

Page 38

The values of the three parameters have been predefined in DrawAid as the variables

butt value = 0
mitre value = 0
round value = 1
bevel value = 2
square value = 2
triangular value = 3

The values given are those defined in Acorn’s Draw file specification. At present
there is no control offered over the proportions of the arrowhead when using triangular
start or finish to the line.

Instead of having to remember the values the programmer inserts the variable name.
Thus for a line staring with a butt, with round joints, and a round end use:

 PROC_line_joints(butt,round,round)

The procedure is used in the same manner as the line styles procedures such as
PROC_dotted as described above. The default values are (butt,mitre,butt)

c) dimensions

PROC_dimension_style(linewidth,colour,fontname$,size,places)

This procedure sets the format of subsequent dimensions using outline fonts as created
by PROC_dimension(), or by PROC_dimension_off(), as described in the section
4: Standard Objects . linewidth refers to the dimension line thickness, whilst size,
defines the nominal character size in mm. The variable places refers to the number of
places after the decimal point in the dimension value. The last place is rounded. The
colour selected affects both the dimension line and its value. The font selected by
fontname$ is any valid font which has been "seen" by the system. If this procedure is
not called the default values given below are used.

PROC_dimension_style_reset

This procedure resets the dimension style to the default values of :

PROC_dimension_style(0.25,black,"Homerton.Bold",4,2)

LineJoints
Frame

Dimensions

Page 39

PROC_dimension_vector_style(width,colour,size,weight,style,places)

This procedure sets the format of the following dimensions using vector text as created
by PROC_dimension_vector(), or by PROC_dimension_off_vector(), and as
described in the Section 4: Standard Objects above. width refers to the dimension
line thickness, whilst size, weight, and style describe the dimension text and can take
the same values as used for PROC_vector_text(). The variable places refers to the
number of places after the decimal point in the dimension value. The last place is
rounded. The colour selected affects both the dimension line and its value.

PROC_dimension_style_reset

This procedure resets the dimension style to the default values of :

PROC_dimension_style(0.25,black,4,medium,regular,2)

Dimensions

Page 40

: Notes

Page 41

14 : DrawAid Variables

a) default variables

DrawAid is arranged with default values for a number of variables, but these can be
changed within PROC_Objects by the user. The following list gives the default
values and possible changes.

variable default alternatives

filename$ "Untitled" <as user decides>

units mm mms units set by :-
PROC_set_units()
cm cms
m metre metres
in inch inches
ft feet foot

 DEFPROC_objects
 REM redefine the working units
 units=inches
 PROC_circle(width2, black, red, 3,3,2)
 ENDPROC

The example fragment above will draw a circle 2 inches radius located 3 inches in both
x and y from the origin.

If data is not to be entered in the default mm then a definition of units will normally be
made at the start of PROC_Objects using PROC_set_units(). see section 12:
System A PROC_set_units() definition inserted into the user's program before
calling PROC_DrawAid() will be ignored, and the default mm will be assumed..

b) reserved variables

There are many procedures within the DrawAid Library, including those described
above, and wherever possible variables used by these procedures have been declared
LOCAL to them. However, some GLOBAL variables can be accessed by the user, and
some care is required in their use.

Page 42

DrawAid operates by making two passes over the procedure PROC_Objects. It does
this from within PROC_DrawAid(). Many of the variables used within
PROC_DrawAid() are therefore GLOBAL with respect to PROC_Objects.
Consequently changes to the values of these variables may affect the running of the
combined program. Some of these variable names are therefore RESERVED and
must not be used. However, all of these reserved variable names end with the two
characters, underscore, and capital A, ie “_A”, and are unlikely to be duplicated by
meaningful names declared by the user. Nevertheless, such endings should be
avoided. The ending “_A” has also been appended to the non-user procedures in the
Library for the same reason.

In addition to these reserved variables there are a number of GLOBAL predefined
constants, available for convenience, which have been referred to above. These can
be used as required but should not normally be redefined. A summary list of these
names is given below.

units, mm, mms, cm, cms, m, metre, metres, in, inch, inches, ft, feet, foot

white, grey1 - grey6, black, none, transparent, clear

greyscale0 - greyscale16, greyscale(), rgb()

dark_blue, yellow, light_green, red, straw, dark_green, orange, light_blue

light, medium, bold, regular, oblique

thin, width0 - width9

butt, mitre, round, bevel, square, triangular

filename$

The names filename$, and units may be redefined according to their use described in
section 13 : Other Facilities .

Page 43

15: Memory and other Facilities

a) Memory management

The amount of memory claimed by DrawAid when it starts up is only 32k. This is
sufficient for ancillary functions such as opening a task window and dumping files as
described below. It means that the application can sit quiescent on the icon bar
without demanding much memory. When a Draw file is required to be shown the
required memory will be extracted from the free pool and released again after use.

If a DrawAid BASIC file is dragged into DrawAid then a subtask is started which
requires a minimum of 160k plus the length of any sprite files to be loaded. The
default setting is 320k which will therefore manage drawings using source sprite files
of up to 160k. The length of the file generated is only dependent on the free disc space
available.

If large sprite files are to be used then more memory may need to be made available to
the subtask by changing the 320k in the application file SetMaxMem to a suitable value.

If no sprites are used then the sub task memory requirement may be reduced to 160k.

If you have a particularly large file or require the maximum speed you can run your
BASIC program without having the DrawAid application running, i.e. <Quit> from the
icon bar. Provided that DrawAid has previously been on the icon bar, and the machine
has not been reset, the DrawAid "environment" will be remembered. In this event the
BASIC program will single task, and will be allocated the total memory showing in the
TaskManager Next slot. This Next slot memory allocation may need to be adjusted to
accommodate any large sprite files to be loaded.

b) Inspecting files

If any file is dragged to the DrawAid icon whilst the <Alt> key is being held down, a
hexadecimal "dump" of the file is produced and stored in the same directory as the
source file. This can then be inspected by loading the dumped data file into Edit.

c) Launching BASIC programs

Not just DrawAid user programs, but any BASIC program can be started as a task by
dragging it onto the DrawAid icon. This is useful if a long background calculation is
required. PRINT or INPUT statements in the BASIC program will cause a task
window to be opened, which will record information for later use.

Page 44

d) Opening a BASIC window

If The <Shift> key is held down whilst clicking on the DrawAid icon, a BASIC task
window is opened for input. This is useful for instant BASIC sums, but operating
system commands also, such as *show or *status, can be entered here without leaving
the desktop. The command *gos will force a change to the operating system
supervisor.

e) Resetting the dialogue box

If a subtask is Quit from the Task Manager before it has completed then the dialogue
box may be left displaying redundant information. This can be removed by clicking
with Select on the icon bar icon. This action also opens DrawAid.UserFiles and
DrawAid.UserFiles.DrawFiles directory viewers, and places them adjacent to the
dialogue box. If these directory viewers are not required then clicking with Adjust will
reset only the dialogue box.

Page 45

16 : Example Programs

An extensive range of example programs is included in the directory
UserFiles.Examples. These cover use of most of the procedures described in the
sections above, and give a good indication of the flexibility of DrawAid. If the
examples are run the resulting Draw files will show the complexity of drawings which
can be produced. In the main text, appropriate examples from this directory have
been indicated in the left margin. The user should note that this directory also includes
the directory Tutorial, and further examples which are described in section
17 : Tutorial .

Page 46

: Notes

Page 47

17 : Vector Font

The resident DrawAid font Vector can be included in a drawing. It can have any size,
weight, and obliqueness, and can be set at any angle. The font is ideal for output to line
plotters as it will provide an exact copy of the screen, and not be dependant on the
plotter's character set. The table below shows all of the characters of the font.

Page 48

: Notes

Page 49

18 : Tutorial

To get the best learning experience from the following programs perhaps they should
be typed in and run. However, if this does not appeal they will all be found ready and
lurking in the directory UserFiles.Examples.Tutorials.

a) Take a Blank Sheet of Paper

Well, not exactly blank. The BASIC program AidBlank is provided as a ready starting
point for most programs using the DrawAid procedures. If you have not already done
so, read Section 3 : Program Format before progressing further with the tutorial.
Section 3 describes the main features of AidBlank, which is reproduced here, renamed
TutorialA, as the starting point for this introductory tutorial.

 10 REM >TutorialA
 20 REM **********************************
 30
 40 LIBRARY “<DrawAid_Lib$Dir>.Procedures”
 50 PROC_report_errors
 60 PROC_DrawAid(“tutorial_a”)
 70 PROC_finish
 80 END
 90
100 REM **
110
120 DEFPROC_Objects
130 REM Place definitions of all objects here eg
140 PROC_circle(width3,black,red,100,100,50)
150 ENDPROC
160
170 REM **

Line 40 loads the required Library of DrawAid procedures. RISC OS is made aware of
the location of this library when the DrawAid icon is double-clicked upon with
<select>. Line 50 provides a simple error handler. Line 60 calls the main Library
procedure PROC_DrawAid(), and this is followed by PROC_finish and the END of
the main program. All of the objects to be drawn and saved as Draw files are defined
within the procedure definition of PROC_Objects forming the rest of the listing.

After double-clicking on the DrawAid icon to install the application on the icon bar, all
that is necessary to run any program is to drag the BASIC program to this icon, and the
required Draw file will be produced, and saved.

Page 50

b) Draw a Circle

In the case of AidBlank the objects are restricted to one circle which is defined using
the DrawAid procedure PROC_circle(width2,black,red,100,100,50). The circle will
be drawn with a black line, width of 2 points, filled with red, its centre will be located
100mm from the lower left hand corner of the drawing both horizontally and vertically.
It will be of radius 50mm. The name tutorial_a has been given to the resulting Draw
file by passing it as a string parameter in PROC_DrawAid("tutorial_a") in line 60.
Leaving this parameter as a null string i.e. "" saves the drawing with the default name
of Untitled.

c) Draw a Circle of Holes

One of the most common items in engineering drawings is a set of holes drilled on a
prescribed pitch circle. This is rather difficult if not impossible to prepare using the
mouse and Draw. However, by use of a FOR...NEXT loop we can modify our
example to prepare a group of such holes. The modified program TutorialB, is shown
below in the two-part listing.

 cont.

 10 REM >TutorialB
 20 LIBRARY "<DrawAid_Lib$Dir>.Procedures"
 30 PROC_report_errors
 40 PROC_DrawAid("tutorial_b")
 50 PROC_finish
 60 END
 70
 80 DEFPROC_Objects
 90 hole_size=11 :REM hole 11mm diameter
100 radius=hole_size/2
110 pcr=50 :REM pcr=pitch circle radius
120 noh=8 :REM noh=number of holes
130 xcentre=100
140 ycentre=100
150 FOR hole=1 TO noh
160 angle=hole*2*PI/noh+PI/noh

Page 51

cont.

170 xc=xcentre+pcr*COS(angle)
180 yc=ycentre+pcr*SIN(angle)
190 PROC_circle(width1,black,none,xc,yc,radius)
200 NEXT hole
210 ENDPROC

This time, a number of variables have been introduced to specify the location of the
centre of the ring of holes xcentre and ycentre, the pitch circle radius pcr, the number
of holes noh, and the diameter of the holes hole_size. These variables allow the
program to produce pitch circles of any size, and number of holes, by a change of
values which could be entered through an INPUT statement before calling
PROC_DrawAid().

The FOR...NEXT loop between lines
150 and 200 calculates the centre of
each hole in turn, and draws a circle
at that point using the same
procedure PROC_circle() as above.

You should prepare this program,
and run it as before to generate the
Draw file named tutorial_b. As
DrawAid groups all of the objects it
prepares, it will be found that the
eight holes are grouped together
within the Draw file.
 tutorial_b

d) Drill a Flange

All of the hole "objects" generated above were grouped together by DrawAid, and this
group would have included any other objects which might have been defined.
However, it is possible to have one level of sub-grouping, as might be desired for a
bolted flange, where the holes would form a sub-group. TutorialC lists the
modifications necessary to do this.

Two new circles, representing the inner and outer radii of the flange, are defined
between lines 140 and 170. The bolt holes are then grouped together by introducing
PROC_new_group at line 180. The group must be ended by PROC_end_group
when all of the holes have been defined, ie at line 250. On running this program the
resulting Draw file main group will contain two circle objects plus one group of holes.

Page 52

Note that the central hole and bolt
hole fill colour has been made white
to obscure the flange colour. True
transparency is possible using path
procedures. See the Examples
directory.

 tutorial_c

 10 REM >TutorialC
 20 LIBRARY “<DrawAid_Lib$Dir>.Procedures”
 30 PROC_report_errors
 40 PROC_DrawAid(“tutorial_c”)
 50 PROC_finish
 60 END
 70
 80 DEFPROC_Objects
 90 hole_size=11 :REM hole 11mm diameter
 100 radius=hole_size/2
 110 pcr=50 :REM pcr=pitch circle radius
 120 noh=8 :REM noh=number of holes
 130 xcentre=100:ycentre=100
 140 outer_radius=pcr+hole_size
 150 inner_radius=pcr-hole_size
 160 PROC_circle(width1,black,grey1,xcentre,ycentre,outer_radius)
 170 PROC_circle(width1,black,white,xcentre,ycentre,inner_radius)
 180 PROC_new_group
 190 FOR hole=1 TO noh
 200 angle=hole*2*PI/noh+PI/noh
 210 xc=xcentre+pcr*COS(angle)
 220 yc=ycentre+pcr*SIN(angle)
 230 PROC_circle(width1,black,white,xc,yc,radius)
 240 NEXT hole
 250 PROC_end_group
 260 ENDPROC

Page 53

e) Bolt a Flange

In the above example a group was defined outside the FOR...NEXT loop. The
procedures could equally well have been used to group objects inside the loop. The
program Tutorial_D shows how this is done, by defining group objects representing
nuts bolted to the earlier flange.

Each nut is defined by a hexagon at line 230, and two circles at lines 240 and 250.
These three items are grouped together by the procedures at 220 and 260. With the
present version of DrawAid it is not possible to nest these nuts as a higher level group,
as only one level of nesting is allowed. The programmer should use grouping
judiciously to minimise the number of objects at the top level of the Draw file.

 10 REM >TutorialD
 20 LIBRARY “<DrawAid_Lib$Dir>.Procedures”
 30 PROC_report_errors
 40 PROC_DrawAid(“tutorial_d”)
 50 PROC_finish
 60 END
 70
 80 DEFPROC_Objects
 90 REM Draw bolted flange with nuts
100 bolt_size=10 :REM bolt 10mm diameter
110 radius=bolt_size/2
120 pcr=50 :REM pcr=pitch circle radius
130 nob=8 :REM nob=number of bolts
140 xcentre=100:ycentre=100
150 outer_radius=pcr+bolt_size
160 inner_radius=pcr-bolt_size
170 PROC_ring(width1,black,grey1,xcentre,ycentre,inner_radius,outer_radius)
180 FOR bolt=1 TO nob
190 angle=bolt*2*PI/nob+PI/nob
200 xc=xcentre+pcr*COS(angle)
210 yc=ycentre+pcr*SIN(angle)
220 PROC_new_group
230 PROC_polygon(width1,black,dark_blue,xc,yc,1.6*radius/COS(RAD(30)),6,0)
240 PROC_circle(width1,black,light_blue,xc,yc,1.6*radius)
250 PROC_circle(width1,black,grey3,xc,yc,radius)
260 PROC_end_group
270 NEXT bolt
280 ENDPROC

Page 54

Of course further grouping is always possible by editing the file within Draw itself.

Instead of using two circles to produce the grey ring PROC_ring() is used at line 170.
This gives a transparent centre, instead of a white disc as in TutorialC. This means
that any object behind the flange will be
partly visible through the hole. See
Drawing2 of the welcome
demonstration. Only three Standard
Objects, have been used in these tutorial
examples so far, but the method of use is
exactly the same for the other objects
which are defined in Section
4 : Standard Objects . The parameters
used by each procedure can be defined
either as constants, or variables whose
value is constantly being recalculated
inside any of the structures of BASIC
such as REPEAT...UNTIL, or
WHILE....
ENDWHILE.

f) A Few Words of Text

The use of the three types of text object are demonstrated in TutorialE. A centre for
the drawing is defined in line 100, then the text string "System Font" is placed, in red
letters, 15mm to the left of this by line 110. The words "Vector Text" are then

disposed on a circular arc by
the loop 130 to 180. The 10
mm high characters are drawn
individually, in dark blue,
bold, regular font by
PROC_vector_text() at line
170. Each character is read
in turn from the data at line
190. Note that, as two calls
are made to PROC_Objects
by PROC_DrawAid() then
the data pointer needs to be re-
set at line 90, by use of the
RESTORE command. If
there is more than one
character in the text string then
these are grouped
automatically. Enter this

Tall Acorn Trinity.Medium

Page 55

program and run it as described above. Load the resulting Draw file into Draw and
after selecting the main object use the ungroup command. You will find that each
character of the string "Vector Text" is an individual object, whereas all the characters
of "Fancy Vector" are grouped together in each colour. The lines 210 to 240
produce these six superimposed strings of Vector text giving a grey shadow effect.
Lines 250 and 260 print the foreground text in yellow with a red outline. By varying
the weight and angle of the characters interesting effects can be produced.

 10 REM >TutorialE
 20 LIBRARY “<DrawAid_Lib$Dir>.Procedures”
 30 PROC_report_errors
 40 PROC_DrawAid(“tutorial_e”)
 50 PROC_finish
 60 END
 70
 80 DEFPROC_Objects
 90 RESTORE
100 xc=100:yc=100
110 PROC_text(red,xc-15,yc,“System Font”)
120 radius=30
130 FOR angle = 180 TO 0 STEP -17
140 xo=xc+radius*COS(RAD(angle))
150 yo=yc+radius*SIN(RAD(angle))
160 READ char$
170 PROC_vector_text(dark_blue,xo,yo,10,bold,regular,angle-90,char$)
180 NEXT
190 DATA “V”,“E”,“C”,“T”,“O”,“R”,“ ”,“T”,“E”,“X”,“T”
200
210 FOR i%=1 TO 6
220 weight=0.35-0.05*i%:colour=i%
230 PROC_vector_text(colour,55,70,13,weight,20,4,“Fancy Vector”)
240 NEXT i%
250 PROC_vector_text(red,55,70,12,bold,regular,0,“Fancy Vector”)
260 PROC_vector_text(yellow,55,70,12,light,regular,0,“Fancy Vector”)
270
280 PROC_outline_text(“Trinity.Medium”,black,white,50,150,10,25,“Tall Acorn Trinity.Medium”,0)
290
300 ENDPROC

Page 56

An example of using the Acorn outline font is given at line 280. The last parameter is
the text angle which is set to 0. Try changing this to say 5 (degrees).

g) A Path to Progress

The DrawAid Standard Objects which have been used in the above tutorial examples
become inefficient for more complex objects, such as mathematically defined curves.
If such a curve was constructed from many line objects it would store much redundant
data. Consequently a set of procedures to construct Path Objects are given in Section
6: Path Objects .

TutorialF shows how to generate nine cycles of a SIN wave as a single path object.
The path is initiated at line 90 to be a blue line, with no fill colour. Line 100 defines
the location of the start of the line, and the first segment to be drawn is the horizontal
axis in line 110. Individual points on the SIN wave are then calculated by the
FOR...NEXT loop from 120 to 150. Because the screen scale is in mm a suitable
amplitude of 30mm has been set in line 120, and the x scale, which is in degrees, has
been converted to a suitable length by dividing by 20 in line 140. As the step size is
set at 10 degrees, the path consists of some 325 elements. Note that there is a limit of
1000 points on a path. The path must be ended, and this is done by the procedure call
at line 160.

If this program is run, and the
resulting Draw file Tutorial_f is
inspected within Draw using
<Select>Edit> from the main menu,
then all of the line elements of the
path will be revealed. (Try
entering that one by mouse!)

 10 REM >TutorialF
 20 LIBRARY "<DrawAid_Lib$Dir>.Procedures"
 30 PROC_report_errors
 40 PROC_DrawAid("tutorial_f")
 50 PROC_finish
 60 END
 70
 80 DEFPROC_Objects
 90 PROC_new_path(width2,dark_blue,none)
100 PROC_move(180,100)
110 PROC_draw(18,100)
120 FOR x%=360 TO 3600 STEP 10
130 y%=100+30*SIN(RAD(x%))
140 PROC_draw(x%/20,y%)
150 NEXT x%
160 PROC_end_path
170 ENDPROC

Page 57

 tutorial_f

Complex paths can be produced in this way. For instance the flange with holes in
TutorialC above could be described as one continuous path containing both
PROC_draw() and PROC_ move() calls. In this way truly hollow rings, with "real"
bolt holes, can be defined. The path sequence can be the subject of the user's own
procedure definition. The resulting Special Object, say PROC_flange(), can then be
called, using the user's own dimension values each time as required.

h) Pointing the Way

As a further example of such a user defined Special Object let us suppose that a dial
object with a positionable pointer is required. The program TutorialG gives an
example of how this might be done, and the figure below shows three pointers.

 tutorial_g

These pointers are produced in TutorialG by the user defined procedure
PROC_meter(x,y,reading%, size). Lines 90 to 110, within DEFPROC_Objects,
make three calls to this procedure, producing three sizes of the pointer at three
locations, and at three different indications, +100%, 0, and -100%. Any intermediate
position could equally well be produced.

Page 58

 10 REM >TutorialG
 20 LIBRARY "<DrawAid_Lib$Dir>.Procedures"
 30 PROC_report_errors
 40 PROC_DrawAid("tutorial_g")
 50 PROC_finish
 60 END
 70
 80 DEFPROC_Objects
 90 PROC_meter(100,100,100,0.8)
100 PROC_meter(130,100,0,1.0)
110 PROC_meter(160,100,-100,1.2)
120 ENDPROC
130
140 DEFPROC_meter(x,y,reading%,size)
150 IF reading% >100 THEN reading% = 100
160 IF reading% <-100 THEN reading% = -100
170 PROC_new_path(width2,black,light_green)
180 PROC_move(10,0)
190 PROC_draw(-2,2)
200 PROC_curve(-2,-2,3,0,3,0)
210 PROC_draw(10,0)
220 PROC_rotate_path(0,0,reading%/3)
230 PROC_move(9,9)
240 PROC_curve(9,-9,13,3,13,-3)
250 PROC_draw(11,-10)
260 PROC_curve(11,10,15,-4,15,4)
270 PROC_draw(9,9)
280 PROC_scale_path(size)
290 PROC_locate_path(0,0,x,y)
300 PROC_end_path
310 ENDPROC

Within DEFPROC_meter() the pointer is initially designed in the centre or zero
position by the path starting at its tip. Line 180 defines this to be at the arbitrary
location (10,0). Since the path is finally located by line 290, this origin point is
selected for arithmetical convenience. Lines 190 to 210 define the pointer, which is
then rotated about location (0,0) to the required angle by line 220. Note that the path
does not need to be completed at this point, and rotation applies only to those points
defined prior to this instruction. The path continues with a move to the top end of the
scale at line 230, and the scale is defined by the next four statements. The whole path

Page 59

is then scaled to size at line 280. Note that, like PROC_rotate(), this scaling could be
applied to only the first part of the path if required. The path is then located at the point
x,y passed as PROC_meter() parameters. Finally the path definition ends at line 300.

i) Multiple File Output

In the above example it may be desired to save each pointer as a separate file. The
necessary changes are given in the listing TutorialH.

 10 REM >TutorialH
 20 LIBRARY "<DrawAid_Lib$Dir>.Procedures"
 30 LIBRARY "<DrawAid_Lib$Dir>.Instrument"
 40 PROC_report_errors
 50 FOR meter%=1 TO 3
 60 filename$="Meter"+STR$(meter%)
 70 PROC_DrawAid(filename$)
 80 NEXT meter%
 90 PROC_finish
100 END
110
120 DEFPROC_Objects
130 IF meter%=1 THEN PROC_meter(10,10,100,0.8)
140 IF meter%=2 THEN PROC_meter(10,10,0,1.0)
150 IF meter%=3 THEN PROC_meter(10,10,-100,1.2)
160 ENDPROC

The Draw files are generated within the loop 40 to 70, with the filename varying for
each call to PROC_DrawAid(). The drawings are stored individually as Meter1,
Meter2, and Meter3. The procedure PROC_meter() having been proved has now
been added to a user Library named Instrument.

This facility enables a user to produce whole ranges of parametric drawings, of similar
objects which vary with the value of any number of parameters. Examples could be
gear wheels, multi-pin chip symbols, poly-molecule diagrams, or a range of window
modular frames.

i) Further Exercises.

Many further examples are included in the Examples directory, and in the main text of
the Guide.

Gears

Page 60

: Notes

Page 61

19: Tools

1) MessageMon

If the BASIC program MessageMon is dragged onto the installed DrawAid icon then a
32kByte task window is opened. This Edit task will record any input and output from
following user's program together together with DrawAid status messages. If the
<Shift> key is held down whilst clicking on this task window Close icon, then the
window will be "iconised" onto the background. However, the task is still running,
and can be opened up later by clicking on the icon. This is a useful tool for debugging
as it can be used to trace execution of the program.

2) Palettes

For use with multiple grey levels the palettes Grey and Default are included.

3) BasicEd

As Version 3 of DrawAid can only be run on RISC OS 3.1 all users will have Edit,
consequently the tool BasicEd is no longer included here.

4) BasicTask

The functions of the application BasicTask which was supplied with previous versions
of DrawAid, are now incorporated into the DrawAid application.

Page 62

: Notes

Page 63

20 : Upgrade Notes

DrawAid Version 3 works in essentially the same manner as previous versions. The
most obvious difference is the presence of the new monitoring program, but some
procedures have been extended with extra parameters. However, there should be little
difficulty in adapting earlier programs to work with the new version.

A number of users of DrawAid 2 requested that the utility have an icon on the icon bar,
and behave in a fully RISC OS compliant manner. Because of problems associated
with adding libraries and BASIC user programs to a Wimp program a separate
application now provides an interface with the user. This independent program has
assumed the DrawAid name and icon, and interacts with the user's program through the
facility of system variables to exchange messages. It has also taken on the task of
illustrating the files produced, using the Acorn DrawFile module.

Changes which will be required to existing programs are to the procedures:

PROC_sprite(), and PROC_outline_text()

Both of these procedures now have an extra parameter (the last in each parameter list)
which defines the rotation angle. If this parameter is not added to earlier programs. the
user will receive an "Arguments of function/procedure incorrect :" message. However,
old programs are easy to change with careful use of the Global change facilities
available on most editors.

The procedures PROC_dimensions() and PROC_dimensions_off(), which previously
used the supplied Vector font, now use the Acorn outline fonts. The vector font can
still be used for pen plotters by using two new associated procedures. See sections
4: Standard Objects and 13: Other Procedures for information about these changes.

A problem in DrawAid2 when calculating the drawing bounding box with non mm
units has required the introduction of the procedure PROC_set_units(). The reserved
variable units is no longer used. See sections 12: and 14 for further details.

If you find any problems with using either old or new programs please let us know.

Page 64

: Notes

